Ultrastructure and Membrane Traffic During Cell Division in the Marine Pennate Diatom Phaeodactylum tricornutum

نویسندگان

  • Atsuko Tanaka
  • Alessandra De Martino
  • Alberto Amato
  • Anton Montsant
  • Benjamin Mathieu
  • Philippe Rostaing
  • Leila Tirichine
  • Chris Bowler
چکیده

The marine pennate diatom Phaeodactylum tricornutum has become a model for diatom biology, due to its ease of culture and accessibility to reverse genetics approaches. While several features underlying the molecular mechanisms of cell division have been described, morphological analyses are less advanced than they are in other diatoms. We therefore examined cell ultrastructure changes prior to and during cytokinesis. Following chloroplast division, cleavage furrows are formed at both longitudinal ends of the cell and are accompanied by significant vesicle transport. Although neither spindle nor microtubules were observed, the nucleus appeared to be split by the furrow after duplication of the Golgi apparatus. Finally, centripetal cytokinesis was completed by fusion of the furrows. Additionally, F-actin formed a ring structure and its diameter became smaller, accompanying the ingrowing furrows. To further analyse vesicular transport during cytokinesis, we generated transgenic cells expressing yellow fluorescent protein (YFP) fusions with putative diatom orthologs of small GTPase Sec4 and t-SNARE protein SyntaxinA. Time-lapse observations revealed that SyntaxinA-YFP localization expands from both cell tips toward the center, whereas Sec4-YFP was found in the Golgi and subsequently relocalizes to the future division plane. This work provides fundamental new information about cell replication processes in P. tricornutum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation.

A highly efficient nuclear transformation method was established for the pennate diatom Phaeodactylum tricornutum using an electroporation system that drives multi-sequence pulses to introduce foreign DNAs into the cells. By optimizing pulse conditions, the diatom cells can be transformed without removing rigid silica-based cell walls, and high transformation efficiency (about 4,500 per 10(8) c...

متن کامل

Comparative genomics of the pennate diatom Phaeodactylum tricornutum.

Diatoms are one of the most important constituents of phytoplankton communities in aquatic environments, but in spite of this, only recently have large-scale diatom-sequencing projects been undertaken. With the genome of the centric species Thalassiosira pseudonana available since mid-2004, accumulating sequence information for a pennate model species appears a natural subsequent aim. We have g...

متن کامل

Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum.

To investigate the effects of polycyclic aromatic hydrocarbons (PAHs) and metals on the population reproduction, antioxidative defense system and cell ultrastructure of the marine diatom, fluoranthene and Cu2+ were selected to test their toxicity to Phaeodactylum tricorntum, in the laboratory. The results indicated that both fluoranthene and Cu2+ inhibited population reproduction of P. tricornt...

متن کامل

SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater.

Photosynthesis in marine diatoms is a vital fraction of global primary production empowered by CO(2)-concentrating mechanisms. Acquisition of HCO(3)(-) from seawater is a critical primary step of the CO(2)-concentrating mechanism, allowing marine photoautotrophic eukaryotes to overcome CO(2) limitation in alkaline high-salinity water. However, little is known about molecular mechanisms governin...

متن کامل

Effect of cell cycle arrest on intermediate metabolism in the marine diatom Phaeodactylum tricornutum.

The inhibitor NU 2058 [6-(cyclohexylmethoxy)-9H-purin-2-amine] leads to G1-phase cell cycle arrest in the marine diatom, Phaeodactylum tricornutum, by binding to two cyclin-dependent kinases, CDKA1 and CDKA2. NU 2058 has no effect on photosynthetic attributes, such as Fv/Fm, chlorophyll a/cell, levels of D2 PSII subunits, or RbcL; however, cell cycle arrest leads to unbalanced growth whereby ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2015